

NFDRS2016: New Dead Fuel Moisture Model

Lesson #4 (Part 2)

NFDRS 2016 Rollout Workshop

Presentation Options

New Dead Fuel Moisture Model

Nelson Model Modifications

New dead fuel moisture model

New Dead Fuel Moisture Model

- ► The previous version of NFDRS required direct user input of State-of-the-Weather (SOW) and changing R to O in WIMS to calculate fine dead fuel moisture before any indices are produced.
- ▶ It also required a separate model for calculating 1/10 hr and 100/1000hr dead fuel moistures.
- ► The old 1hr 1000hr fuel moistures models will be replaced by the scalable Nelson Dead Fuel Moisture Model

New Fine Dead Fuel Moisture Model **Nelson**

- ▶ Nelson Model:
 - More accurately models diurnal and seasonal dead fuel moisture using hourly fire weather observations
 - Requires no daily human intervention (I.E. No stateof-the-weather)
 - Has been running in a prototype mode in operational WIMS since December, 2011 and has been part of fire behavior prediction tools (FARSITE, FlamMap) for over a decade

Nelson Dead Fuel Moisture Model

- Calculated HOURLY
- Nelson has 4 weather inputs:
 - Temperature
 - Relative Humidity
 - Solar Radiation
 - Precipitation

We define an instance of the Nelson model of the four timelag dead fuel classes used in NFDRS:

Time Lag	Stick Radius	
	in	cm
1-hour	0.08	0.20
10-hour	0.25	0.64
100-hour	0.80	2.00
1000-hour	1.50	3.81

Nelson Model Specifics

- Accounts for diffusive and capillary water transport between the fuel and the atmosphere
- Derives surface temperature from an energy balance
 - Net input of heat gains and losses
- Accounts for dew formation on fuel surface
- Scalable to any size dead fuel

Fuel Energy Balance

Heat Loss = Heat Gain

- Conduction + Longwave Radiation + Evaporation
 - = Solar Heating + Convective Heating

Capillary water transport in Nelson

Changes in stick average moisture content fraction versus hourly captured rainfall (dt = 1 h) during field experiments in Burnsville, N.C. (circles), and Mio, Mich. (triangles). Solid symbols, initial moisture fraction smaller than 0.4, open symbols, initial fraction greater than 0.4 (from Nelson, 2000).

Example Nelson 1hr and 10 hr fuel moistures

Example Nelson 100hr and 1000hr fuel moistures

Recent Nelson 1000-hr Model Modifications

Uncorrected Nelson 1000hr and subsequent ERC

New Minimum Adsorption Rate

New minimum Adsorption Rate and Realigned fuel stick diameters

Flagstaff example: New Model with 2017

Determining stick moisture from nodes

Nelson Model

New model with Radial Median

New model with Radial Median and Adsorption Correction

New model with Radial Median, Adsorption Correction and modified stick radii

- Change the Minimum Adsorption Rate
- Change the stick diameters
- Change the radial averaging method

New Fine Dead Fuel Moisture Model **Nelson**

- NFDRS78 requires daily State-of-the-Weather (SOW) input and R to O in WIMS to calculate fine dead fuel moisture before indices are produced.
- ► The old 1hr 1000hr fuel moistures models will be replaced by the scalable Nelson Dead Fuel Moisture Model
- Nelson Model:
 - Diurnal and seasonal dead fuel moisture using hourly fire weather observations
 - Requires no daily human intervention (I.E. No state-of-the-weather)
 - ► Has been running in WIMS since Dec 2011 and has been part of fire behavior prediction tools (FARSITE, FlamMap) for over a decade

Nelson Dead Fuel Moisture Model

- Calculated HOURLY
- Nelson has 4 weather inputs:
 - ▶ Temperature
 - ► Relative Humidity
 - ► Solar Radiation
 - Precipitation

Time Lag	Stick Radius	
	in	cm
1-hour	0.08	0.20
10-hour	0.25	0.64
- 100-hour	0.80	2.00
- 1000-hour	1.50	3.81

We define an instance of the Nelson model of the four timelag dead fuel classes used in NFDRS:

Good qualities of Nelson's model

Direct Precipitation Control

Full Energy Balance

Heat Loss = Heat Gain

- Conduction + Longwave Radiation + Evaporation
- = Solar Heating + Convective Heating

- Accounts for dew formation on fuel surface
- Removes need for SOW

Nelson Jr, R.M., 2000. Prediction of diurnal change in 10-h fuel stick moisture content. Canadian Journal of Forest Research 30, 1071-1087.

Questions?

