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A B S T R A C T

The US National Fire Danger Rating System (USNFDRS) supports wildfire management decisions nationwide,
but it has not been updated since 1988. Here we implement new fuel moisture models, and we simplify the fuel
models while maintaining the overall USNFDRS structure. Modeled and measured live fuel moisture content
values were highly correlated (𝑟2 = 0.629 with defaults and 𝑟2 = 0.693 when species and location optimized).
We also consolidated fuel models to five fuel types that eliminated significant index cross-correlation. Index
seasonality compared between old (V2) and new USNFDRS models (v4) across six US National Forests was
very similar (𝜌 = 0.97). V4 was as good or better than V2 at predicting fire days in 92% of the cases tested
and V4 effectively predicted wildfire days and large fire ignition days (AUCs 0.647 to 0.915). USNFDRS V4
can adequately depict spatial and temporal wildland fire potential and it can be adapted for worldwide use.
1. Introduction

Wildland fires are common global disturbances, recently burning
between 360 and 380 Mha per year (Chuvieco et al., 2016). As pop-
ulations grow and urban development expands into the wildlands, the
socio-economic impacts of wildfire continues to mount (Bowman et al.,
2017). Because extreme wildfires are becoming more common, there
is a need to transform how society views wildland fire and there is
also a need to develop better systems to expand decision space and
help society better coexist with fire (Moritz et al., 2014). Such deci-
sion support systems would include tools that effectively characterize
when and where wildfires start and how they might burn over time.
This information could be used to manage wildfires more effectively
by promoting the ecological role of wildfires while reducing risks to
responders and society.

Wildland fires occur when an ignition source strikes an available
fuel under suitable weather conditions and subsequent fire behavior is
often enhanced by terrain. ’Fire Danger Rating Systems’ characterize
these interactions between fuel, weather and terrain to predict spatio-
temporal variations in wildland fire potential. These systems produce
collections of indices that are related to a variety of wildfire charac-
teristics such as ignition probability, spread rates and heat release/fire
intensities. The ’fire danger indices’ are used to inform operational de-
cision making at local, regional, national and sometimes international
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scales. In the United States, the National Fire Danger Rating System
(USNFDRS) has been used to support operational decision making for
the last 50 years (Deeming, 1972; Deeming et al., 1977; Bradshaw et al.,
1984). Observed and forecast outputs from the USNFDRS are monitored
daily and used to maintain wildland fire situational awareness and
appropriately staff for and respond to wildfires (National Wildfire
Coordinating Group (NWCG), 2023). These indices are also used to plan
for and safely conduct prescribed fires (Andrews and Williams, 1998)
as well as to inform the public about wildfire potential. This potential
is commonly communicated through signage commonly seen on US
National Forests (Fig. 1).

The USNFDRS was first created in 1972 (Version 1) in an effort
to standardize fire potential estimates across the country from an
assemblage of research efforts that started as early as 1916 (Deeming,
1972; Hardy and Hardy, 2007). In 1978 (Version 2), the system was
revised to address a number of issues that arose in the original system
such as its poor response to long-term drought and its inability to depict
live fuel dynamics (Deeming et al., 1977), and in 1988 (Version 3), the
system was revised to address concerns of fire managers primarily in
the Southeastern United States that the original model was performing
poorly in humid environments (Burgan, 1988). Until recently, either
USNFDRS Version 2 or Version 3 has been used operationally through-
out the United States, serving as the basis for many local, regional
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Fig. 1. Example fire danger sign commonly displayed on public lands throughout the
United States. Fire danger categories, sometimes referred to as Adjective Fire Danger
Ratings (Schlobohm and Brain, 2002), are one of the outputs of USNFDRS.
Source: (US Department of Agriculture, 2014).

Table 1
Versions of the US National Fire Danger Rating System.

Year NFDRS Version Reference

1972 Version 1 Deeming (1972)
1978 Version 2 Deeming et al. (1977)
1988 Version 3 Burgan (1988)
2024 Version 4 Jolly et. al. (This Pub)

and national fire management decisions but predominately Version 2
was used everywhere except a few isolated fire management units the
Southeastern US. No further revisions or modifications to the system
had been made for over thirty years (Table 1). Even early during the
development of the USNFDRS, the system developers recognized the
need for the underpinning science to evolve and for improvements to
these systems to be made over time. One of the original USNFDRS
developers once said:

‘‘A technical revision of the National Fire Danger Rating System
alone will not cure all the problems with the fire danger rating
programs. What is needed is a national program that will emphasize
research in NFDRS application, management, and validation, and
that will revise the System as required’’. John Deeming (1984)

The USNFDRS is primarily a weather-based system and it is struc-
turally similar to other fire danger rating models in use throughout
the world such as the Canadian Forest Fire Danger Rating System
(CFFDRS) (Stocks et al., 1989) and the McArthur Forest Fire Danger
Index (FFDI) (Noble et al., 1980). However, in contrast to many other
fire danger models, the USNFDRS has enabled fire danger estimation
across multiple fuel types since its inception. Early version of other
systems, like the Australia Fire Danger Rating System (AFDRS), created
different fire danger systems or meters for grasslands and forests and
the CFFDRS was integrated with Canadian Fire Behavior Prediction
System to provide more detailed, fuel type-dependent assessments of
burning conditions but neither these systems were not harmonized
into a single system that varies by fuel type like USNFDRS. Recently,
other national systems, such as the AFDRS (Hollis et al., 2024) and the
CFFDRS (Boucher et al., 2021), have also started expanding to multiple
fuel types to better reflect local fire behavior potential. Independently,
research teams in the US, Canada and Australia have recognized the
need to modernize their systems, further emphasizing the importance
of these system to support fire management decisions as multiple scales.
The USNFDRS uses weather observations to first estimate fuel moistures
of various size classes of dead and various categories of live fuels. These
fuel moistures are then combined with surface fuel loadings and site
2 
characteristics to estimate fire danger metrics that relate to the rate of
spread, energy release and flame length of an initiating fire (Schlobohm
and Brain, 2002; Chuvieco et al., 2023).

Through decades of use, fire managers and scientists have developed
an in-depth understanding of the USNFDRS and through these insights
have identified clear deficiencies in some system components while
also noting clear benefits of other system components. Early during its
development, it was decided that control of some of the key elements of
the system, such as the calculation of live and fine dead fuel moistures,
would require manual inputs. Users were thus required to enter values
such as green-up dates annually and daily state-of-the-weather (a proxy
for sky cover) (Bradshaw et al., 1984). With over 2200 weather stations
providing the input to calculate fire danger each day, these manual
entries are very costly and are often subjective. If these entries are
not made, fire danger estimates are not available to decision makers
at various local, regional and national levels. Extensive human input
also precluded the system from leveraging gridded weather datasets to
map and forecast fire danger where weather stations are absent, thus
foregoing the opportunity to provide fire danger estimates at any point
in the country (Jolly et al., 2019).

The USNFDRS was created as a collection of modules that interact to
estimate fire potential. These modules, or sub-models, can be improved
in isolation while maintaining the overall structure and continuity of
the system (Bradshaw et al., 1984). For example, the live and dead fuel
moisture models can be replaced without interrupting the fuel model
module, and fuel models can be replaced to reflect different fuel types
without interrupting the fire danger index module. New research exists
to improve the various sub-models and these advances can overcome
specific limitations of Versions 2 and 3 such as its inability to depict
live fuel seasonal dynamics or the need to fully automate the fire
danger calculations. Specifically, a physically-based dead fuel moisture
model (Nelson, 2000; Carlson et al., 2007) and a physiologically-based
phenology model (Jolly et al., 2005; Daham et al., 2019) can serve
as the foundation for the next generation of USNFDRS fuel moisture
models. Further, the abundance of fuel models included in Versions
2 and 3 adds unneeded system complexity that warrants exploration
and simplification as long as the efficacy to predict fire potential can
be retained. By replacing the dead and live fuel moisture models and
simplifying the fuel models, these combined changes could yield a
system that is fully automated, sensitive to vegetation type, responsive
to drought and robust enough to assess historical and forecast fire
potential throughout the country. Fire danger indices can be produced
using historical weather data but indices can also be calculated using
short- or medium-range weather forecasts or even climate change
scenarios. This new fire danger rating system can provide critical fuel
moisture and fire danger inputs to decision support systems at every
spatial scale of interest and it could substantially improve the ability to
plan for and respond to wildland fires across the United States. Further,
it is sufficiently generalized to be applied anywhere in the world where
wildfires are common.

Here we leverage the USNFDRS modularity to implement new dead
and live fuel moisture models and to implement a simpler set of
existing surface fuel models that represent broad, globally applicable
fuel types. We also demonstrate how local calibration of the new live
fuel moisture model can significantly improve seasonal predictions of
live fuel dynamics. We evaluate these changes across six US National
Forests System. We apply these sub-models in the existing USNFDRS
framework and produce a revised fire danger model that is as good, or
better, than the current USNFDRS while ensuring the new model is fully
automated, produces the same fire danger indices as previous versions
and is simpler. Finally, we discuss how this model is better equipped
to meet the expanding availability of gridded weather observations and
forecasts.
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Table 2
Hourly weather inputs to the USNFDRS Version 4.

Parameter Units

Temperature ◦C or ◦F
Relative Humidity %
Rainfall mm or inches
Windspeed KPH or MPH
Downward Shortwave Solar Radiation W/m2

Snow cover (Yes or No)

Table 3
Fuel model parameters in the USNFDRS. Fuel load and fuel particle surface
area-to-volume ratio are specified for each of the six fuel classes and categories.

Parameter Units

Fuel Loads tons acre-1

Fuel Surface Area-to-Volume Ratios ft-1

Fuel Heat Content BTU lb-1

Dead Fuel Moisture of Extinction % dry wt
Wind Adjustment Factor DIM
Maximum Spread Component DIM
Drought Fuel Loading tons acre-1

2. US National Fire Danger Rating System (USNFDRS) structure

The USNFDRS is composed of four primary modules: Inputs, Fuel
Moisture Models, Fuel Models and Fire Danger Index Models (Fig. 2).
Inputs include measured weather data and local fuels and terrain char-
acterizations. Operationally, weather inputs (Table 2) for USNFDRS
come from a network of over 2200 Remote Automated Weather Sta-
tions (RAWS) that are situated throughout the contiguous United States
(CONUS), Alaska, Hawaii, Guam and Puerto Rico. Historically, these
stations have recorded hourly air temperature, relative humidity, rain-
fall, wind speed measured 20 ft above ground level and averaged over
a 10 min period, wind direction and instantaneous peak wind gusts.
Hourly measurements were summarized to daily extremes of tempera-
ture and relative humidity and summations of rainfall duration for use
in USNFDRS Versions 1–3. Installation of solar radiation sensors began
in 2001 and currently all operational fire weather stations now mea-
sure hourly solar radiation in addition to the suite of aforementioned
variables. All weather data are ingested into the Weather Information
Management System (WIMS) which maintains the data archive for
all weather stations and also performs all fire danger calculations for
operational use. Local fuel descriptions defined numerically as a ’fuel
model’, historical weather climatology and terrain characteristics, such
as slope, at the estimation site round out the required set of USNFDRS
inputs. While the operational system currently uses RAWS weather
data, the system can operate on any input weather data sources as long
as the required variables are provided or can be estimated.

The second module is a collection of dead and live fuel moisture
models. Dead fuel moisture contents are calculated for four size classes
based on their response times, or timelags (Byram and Nelson, 2015),
to changing environmental conditions. Small diameter dead fuels are
represented by the One Hour (1-h) and Ten Hour (10-h) fuel moisture
classes and generally correspond to fuel diameter classes of < 6 mm
(1∕4 inch) and 6 mm up to 25.4 mm (1∕4 to 1 inch) in diameter. Large
diameter dead fuels are represented by One Hundred Hour (100-h) and
One Thousand Hour (1000-h) fuel moisture classes and they correspond
to fuel diameter classes of 25.4 mm (1 inch) up to 76.2 mm (3 inches)
inches and 76.2 mm (3 inches) or greater. Fine dead fuel moistures
vary rapidly both diurnally and daily, while heavy dead fuel moistures
are generally stable day to day but show more variability from week
to week. In USNFDRS Version 2, these fuel moistures are calculated
using two separate models, one for fine dead fuels (Fosberg, 1971)

and one for heavy dead fuels (Fosberg et al., 1981). Moisture contents
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for two live fuel categories, herbaceous (grasses and forbs) and woody
shrub (twigs and foliage) surface fuels, are estimated using another two
models separate from, but linked to 1000-h fuel moistures (Burgan,
1979). Modifications in 1988 (Version 3) provided more control over
live fuel moistures by including climatological and phenological pa-
rameters such as Season Codes and Greenness Factors (Burgan, 1988).
Together the dead and live fuel moisture models form the foundation
of the USNFDRS and the outputs from these models are combined
and weighted with Fuel Models to calculate fire danger metrics. All of
these models were built modularly to allow them to easily be improved
as new science and technologies became available (Deeming et al.,
1977). Yet, despite these early intentions, no significant modifications
or improvements have been made to the system for 37 years.

The third module is the Fuel Model (Table 3). Fuel Models are
used to weight the relative influence of each of the six fuel moisture
contents on the final Fire Danger Index calculations. For each of the 4
dead fuel size classes and 2 live fuel categories, loadings and surface-
area-to-volume (SAV) ratios are specified and these are used in the
Fire Danger Index Calculations. Originally there were 9 fuel models in
Version 1 (Deeming and Brown, 1975). This expanded to 20 in Version
2, which were then modified to generate an additional 20 more in
Version 3. Most of the fuel models in Version 3 were identical to the
Version 2 fuel models but some parameters were changed for a few of
the fuel models. Many of these fuel models are similar, if not completely
redundant, presenting a potential source of simplification for a future
version of the system.

The final module is the Fire Danger Index Calculation. The original
USNFDRS produces four primary metrics related to various aspects of
the management and / or control of a wildland fire: Energy Release
Component (ERC), Spread Component (SC), Burning Index (BI) and
Ignition Component (IC). Later, the Severe Fire Danger Index (SFDI),
a combination of the ERC and BI percentiles, was added to improve
UNFDRS’ ability to assess extreme events (Jolly et al., 2019). Compo-
nents are individual, stand-alone values and Indices are a combination
of two or more Components. All Components and Indices are meant to
represent conditions at the head of an initiating surface fire. Energy
Release Component represents the total potential energy release per
unit ground area of the flaming front of a wildfire. Spread Component
is proportional to the fire’s forward rate of spread. Burning Index
is proportional to the fire’s flame lengths and Ignition Component
is a measure of how likely a fire will start and will require some
sort of suppression action (Schlobohm and Brain, 2002). Components
and Indices are calculated daily using midday fuel moistures and the
results are published and stored in WIMS to support operational fire
management decisions. These components and indices are generally
derived from a surface fire spread model developed by Rothermel in
1972 (Bradshaw et al., 1984). Selection of a particular Component or
Index to characterize and communicate daily fire potential in a given
area is a local decision, with ERC and BI selected by over 95% of users
nationwide.

3. Software availability

Source code for the NFDRS Version 4.0 Command Line Interface
(CLI) is available on Github (https://github.com/firelab/NFDRS4 (Brit-
tain and Jolly, 2024)). Included in the code are SWIG wrappers to
allow users to build a Python library that exposes the CLI for use in
other modeling frameworks. The calculator is also implemented in a
Windows-based desktop application called FireFamily+ (FireFamily+,
2022) that can import weather data, calculate USNFDRS Version 4
fuel moistures and indices and perform statistically comparisons of
NFDRS V4 outputs to wildfire occurrence data. Additionally, all model

simulations and analyses performed for this manuscript are provided

https://github.com/firelab/NFDRS4
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as Jupyter Notebooks on Github (https://github.com/firelab/NFDRS4-
TechDoc) to ensure transparency and reproducibility of all analyses.

Name: FireFamily Plus (FireFamily+, FF+)

Developer: USFS, RMRS, Missoula Fire Sciences Laboratory in collab-
oration with Altura Solutions.

Year first officially released: 1999

Hardware required: PC

Operating Systems Supported: MS Windows for FF+ and Both MS
Windows and Linux for the Command Line Interface

Availability: https://www.firelab.org/project/firefamilyplus

Cost: Free

4. Methods

4.1. Updates for the US national fire danger rating system (USNFDRS
version 4)

Over the last four decades, the US National Fire Danger Rating
System has been used extensively to support fire management decisions
nationwide. During that time, several system deficiencies have been
identified and many lessons have been learned. In order to address
these identified needs, three major changes are being implemented in
the USNFDRS: replacing the dead fuel moisture models, replacing the
live fuel moisture models and simplifying the number of fuel models.

4.2. A new dead fuel moisture model

The fine and heavy dead fuel moisture models used in USNFDRS
Versions 2 and 3 are based on simple equilibrium moisture content
equations developed by the USDA Forest Products Laboratory (Brad-
shaw et al., 1984; Fosberg et al., 1981). In conjunction with empirically
derived diffusivity coefficients for each of the four timelag fuels, these
equations are solely based on temperature and relative humidity for the
fine fuels. Rain events that fully saturate fine fuels are handled by a rule
that simply sets the fuel moisture content (FMC) to 35%, and changes
in fuel surface temperature and relative humidity are set by a rule
based on cloud cover. Heavier fuels are influenced by 24 h precipitation
duration. However, generally these models do not include key inputs
that are known to influence fuel moisture, such as precipitation amount
and insolation and they do not attempt to simulate the underlying
physical processes that drive moisture exchanges between the fuel and
the atmosphere (Fosberg et al., 1981).

In previous USNFDRS versions, users are required to manually
enter a daily ‘State-of-the-Weather’ (SOW) code that describes the sky
cover at observation time. Categorical values specifically entered at
each of the 2200+ weather stations across the network are used to
estimate the influence of cloud cover on fuel surface temperature and
relative humidity. The fuel moisture model developed by Nelson (2000)
circumvents SOW codes by using measured solar radiation to resolve
the fuel stick surface energy balance. This physically-based model
has been adapted to scale to any fuel size class and it is driven by
hourly measurements of temperature, relative humidity, precipitation
and solar radiation. It is considerably more robust than the fine dead
fuel moisture models used in Versions 2 and 3 because it includes
daily antecedent conditions in all calculations. One of the primary
benefits of this change is that the model can run completely automated
without the need for any subjective, daily SOW inputs. This has already
significantly reduced workloads and increased system reliability, while
also concurrently improving the accuracy of the underlying dead fuel
moisture model.

Version 4 directly uses the fuel moisture model presented by Nel-
son (Nelson, 2000), which was only developed for dead fuels between

1
6 mm to 25.4 mm ( ∕4 to 1 inch) in diameter (10-h timelag fuels).

4 
Table 4
Timelag dead fuel size classes and simulated fuel stick diameters used by USNFDRS to
parameterize the Nelson–Carlson dead fuel moisture model.

Timelag Stick Diameter (𝜙) (cm/in)

1 h 0.4/0.16
10 h 1.28/0.5
100 h 4.0/1.57
1000 h 7.62/3.0

However since FMCs are required for all four dead fuel size classes, the
model was extended to allow the direct application of the fuel moisture
model to any diameter of fuel by Carlson et al. (2007). To accommo-
date these changes, six functions were derived to allow the automatic
derivation of model parameters as a function of fuel diameter. Version 4
uses four ’fuel sticks’ within the Nelson–Carlson model to represent the
four timelag dead fuel classes and these diameters are given in Table 4.

4.2.1. Nelson–Carlson dead fuel moisture evaluation
In the early 1990s, a new dead fuel moisture model was developed

by Nelson 2000 and field tested using standard arrays 10-h fuel sticks
with diameters of about 1.27 cm (0.5 inches). The model was developed
with the express intention to replace existing dead fuel moisture models
used for both Fire Danger and Fire Behavior prediction systems used in
the US and worldwide. It is driven by easily measured hourly surface
weather parameters: temperature, relative humidity, total rainfall and
solar radiation. While this model showed great improvements over
existing dead fuel moisture models, it still was not useful for replacing
the timelag fuel moistures in NFDRS because it was only developed for
10-h fuels.

Over subsequent years, the fuel stick parameter set for the original
Nelson model was expanded, allowing for the simultaneous simulation
of dead fuel moisture in each of the four timelag dead fuel classes (Carl-
son et al., 2007). After field testing, this model was implemented into
the Weather Information Management System (WIMS) for operational
use and it was compared to traditional USNFDRS dead fuel moistures
for a decade but it never officially replaced the existing dead fuel
moisture models in previous USNFDRS versions. Here we leverage this
flexible dead fuel moisture model, hereafter referred to as the Nelson–
Carlson model, as a one-for-one replacement for the extant dead fuel
moisture models in NFDRS for each dead fuel size class. Given that the
model has already been developed, tested and peer-reviewed, we will
not offer further evaluation here. For more information about the model
implementation and testing, refer to Carlson et al. (2007).

4.3. A new live fuel moisture model

The live fuel moisture model in USNFDRS Versions 2 and 3 has long
been known to be the weakest module of the entire system. While it
performs adequately in some of the semi-arid Western United States
where it was developed, it lacks sufficient generality to be applicable
to a wide range of ecosystems and it has no actual physiological foun-
dations. Additionally, it requires human intervention through manual
system inputs throughout the season to operate. In Version 2, the user
must define the green-up date, the live fuel dormant date and other
transition dates each season. In Version 3, users must define Season
Codes each year and Greenness Factors roughly weekly to maximize
system performance. Ultimately, this high degree of human interaction
limits the ability of NFDRS to be used across broad spatial and temporal
scales and even with these manual inputs, feedback from field users has
suggested that the system rarely tracks live fuel variations sufficiently
across the country.

The generalized vegetation phenology model that was developed
by Jolly et al. (2005) and extended by Daham et al. (2019) can solve
these deficiencies. This model, called the Growing Season Index (GSI),
operates on daily surface weather observations of minimum tempera-

ture, vapor pressure deficit, photoperiod and rainfall, all of which can
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Fig. 2. Structure of the US National Fire Danger Rating System Version 4. Weather inputs are divided into hourly or daily values where daily values are simple sums or extrema
of the hourly inputs.
be obtained from point-source and gridded weather observations and
forecast. The original model only used minimum temperature, vapor
pressure deficit and photoperiod but it was extended by Daham et al.
(2019) to include a direct influence of precipitation. This modification
greatly improved the prediction of live fuel dynamics in arid and semi-
arid climates. The model has been tested and it has proven sufficiently
general to predict seasonal changes in leaf cover and productivity
across a wide range of global biomes (Jolly et al., 2005; Daham et al.,
2019). It automatically predicts transitions from dormancy to growth
throughout the season and it also depicts periods of water stress when
herbaceous fuels begin to cure or when woody plants begin to shed
leaves. Automated predictions of live fuel conditions will eliminate
the need for USNFDRS users to manually ‘manage’ live fuel model
states throughout the year. It will also facilitate historical comparisons
between fire danger and fire activity, especially when green-up dates
were not recorded. Finally, this model can also be forecast using
available numerical weather predictions or climate change scenarios,
thus providing a more robust solution for future applications of US-
NFDRS. Ultimately, this simple model can substantially strengthen the
linkage between live fuel dynamics and fire danger and it is sufficiently
generalized to allow global application.

4.3.1. The Growing Season Index (GSI)
GSI is the product of four daily ramp functions that are derived

from surface weather conditions and that are proxies for physiolog-
ical mechanisms that limit plant functions: low temperatures (daily
5 
minimum temperature), evaporative demand (vapor pressure deficit),
photoperiod (daylength) and water stress/low soil moisture (precipita-
tion). Upper and lower thresholds were referenced from the literature,
assuming that phenological activity varied linearly from inactive (0)
to unconstrained (1) between a pair of well-defined environmental
limits (Jolly et al., 2005; Daham et al., 2019). The generalized form
of the ramp function is given in Eq. (1) and their parameter-specific (𝛼
and 𝛽) variants are described in detail below for each of the four daily
input weather variables.

Ramp functions use the following generalized equation and are
parameterized for each daily GSI input variable:

𝑖𝑋𝑡 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if 𝑋𝑡 ≤ 𝛼
𝑋𝑡 − 𝛼
𝛽 − 𝛼

if 𝛼 < 𝑋𝑡 < 𝛽

1, if 𝑋𝑡 ≥ 𝛽

(1)

where 𝑋𝑡 is the weather variable input on day 𝑡, 𝛼 and 𝛽 are the
lower and upper ramp function limits and 𝑖𝑋𝑡 is the daily, derived
ramp function value bounded between 0 and 1 inclusive. GSI uses
four weather-based ramp functions, each with their own default lower
and upper limits. These lower and upper limits can be adjusted to
better reflect local conditions when necessary. The four ramp function
descriptions are given below.
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Table 5
Default GSI input variable ramp function limits used for NFDRS Version 4.

Variable Units Lower Limit
(𝛼)

Upper Limit
(𝛽)

𝑖𝑉 𝑃𝐷𝑡 Pa 900 4100
𝑖𝑇𝑚𝑖𝑛𝑡 ◦C (◦F) −2◦ (28.4◦) 5◦ (41◦)
𝑖𝐷𝑎𝑦𝑙𝑡 Seconds (Hours) 36,000 (10) 39,600 (11)
𝑖𝑃 𝑟𝑐𝑝𝑡 mm (in) 0 (0) 10 (0.394)

4.3.2. Daily minimum temperature

𝑖𝑇𝑚𝑖𝑛𝑡 = 𝑖𝑋𝑡(𝑋𝑡 = 𝑇𝑚𝑖𝑛𝑡, 𝛼 = −2.0, 𝛽 = 5.0) (2)

here 𝑇𝑚𝑖𝑛𝑡 is the daily minimum temperature (◦ C) and 𝑖𝑇𝑚𝑖𝑛𝑡 is the
aily minimum temperature ramp value.

.3.3. Daily maximum vapor pressure deficit (VPD)

𝑉 𝑃𝐷𝑡 = 1 − 𝑖𝑋𝑡(𝑋𝑡 = 𝑉 𝑃𝐷𝑡, 𝛼 = 900, 𝛽 = 4100) (3)

here 𝑉 𝑃𝐷𝑡 is the daily maximum vapor pressure deficit (VPD) in
ascals, and 𝑖𝑉 𝑃𝐷𝑡 is the daily VPD ramp value. VPD is computed using
he daily maximum temperature and minimum relative humidity using
aturation vapor pressure calculations presented by Murray (1967).

.3.4. Photoperiod/daylength

𝐷𝑎𝑦𝑙𝑡 = 𝑖𝑋𝑡(𝑋𝑡 = 𝐷𝑎𝑦𝑙𝑡, 𝛼 = 36000, 𝛽 = 39600) (4)

here 𝐷𝑎𝑦𝑙𝑡 is the daily photoperiod, or daylength, (seconds) and
𝐷𝑎𝑦𝑙𝑡 is the daily daylength ramp value.

.3.5. Daily precipitation
Precipitation is included using a short-term running total with a

ser-defined temporal window (in days) as follows:

𝑟𝑐𝑝𝑡 =
𝑃𝑟𝑐𝑝𝑁𝐷𝑎𝑦𝑠−1

∑

𝑛=0
𝐷𝑎𝑖𝑙𝑦𝑃 𝑟𝑐𝑝𝑡−𝑛 (5)

here 𝐷𝑎𝑖𝑙𝑦𝑃 𝑟𝑐𝑝𝑡 is the total daily precipitation at time 𝑡 in millimeters
nd PrcpNDays is the number of lag days to include in the running total.
rcpNDays is 28 days by default but it can be adjusted. 𝑃𝑟𝑐𝑝𝑡 is the
aily running sum of the last PrcpNDays and is updated daily. The daily
unning total precipitation is then used in an ramp function to calculate
he daily running total precipitation ramp value as follows:

𝑃𝑟𝑐𝑝𝑡 = 𝑖𝑋𝑡(𝑋𝑡 = 𝑃𝑟𝑐𝑝𝑡, 𝛼 = 0, 𝛽 = 0.394) (6)

here 𝑃𝑟𝑐𝑝𝑡 is the running daily sum of precipitation for the past 𝑁
ays calculated from Eq. (5) on day t.

Default upper and lower limits for each of the four ramp func-
ions are summarized in Table 5 but these parameters can be lo-
ally calibrated to better reflect local physiological constraints to plant
ctivity.

The final GSI value is calculated as the product of the four, daily
amp function values for minimum temperature, maximum VPD, pho-
operiod and running total precipitation. The unsmoothed, daily GSI
iGSI) is calculated as follows:

𝐺𝑆𝐼 𝑡 = 𝑖𝑇𝑚𝑖𝑛𝑡 ∗ 𝑖𝑉 𝑃𝐷𝑡 ∗ 𝑖𝐷𝑎𝑦𝑙𝑡 ∗ 𝑖𝑃 𝑟𝑐𝑝𝑡 (7)

here 𝑖𝐺𝑆𝐼𝑡 is the daily product of the ramp function values for the 4
nputs (Eqs. (2)–(4) and (6)). The final daily GSI is then calculated as
he n-day lagged moving average of the daily indicator (iGSI):

𝑆𝐼𝑡 =
1

𝐺𝑆𝐼𝑁𝐷𝑎𝑦𝑠

𝐺𝑆𝐼𝑁𝐷𝑎𝑦𝑠−1
∑

𝑛=0
𝑖𝐺𝑆𝐼𝑡−𝑛 (8)

Where GSINDays is 28 days by default but can be modified as part of
model calibration (see Fig. 3).
 i

6 
4.3.6. Conversion of GSI to live fuel moisture
To make daily GSI values useful for USNFDRS, it must be trans-

formed into a live fuel moisture content value for both herbaceous
(grasses and forbs) and woody live fuels(shrubs and small seedlings or
saplings). To facilitate this inclusion and transformation, a separate GSI
calculations is performed daily for herbaceous and woody live fuels
(live fuel categories are denoted by subscript 𝑓 ). Daily Herbaceous
and Woody GSI values are then used to calculate daily live herba-
ceous LFMC and live woody LFMC, respectively. The ramp functions
for the live herbaceous and live woody fuel categories are identical
by default (hence 𝐺𝑆𝐼ℎ = 𝐺𝑆𝐼𝑤 by default). However, the lower
and upper limits presented in Table 5 can be modified independently
for herbaceous and woody fuels to better capture phenological and
physiological differences between the two functional types. GSI values
below a specified green-up (GU) threshold are assigned either a fully
cured value for herbaceous fuels or a dormant fuel moisture value
for woody plants, consistent with the live fuel moisture model in
USNFDRS Version 2/3 (Burgan, 1979). Minimum and maximum live
herbaceous and woody fuel moisture ranges were carried over from
USNFDRS Version 2 (Bradshaw et al., 1984) with the exception of a
single dormant woody fuel moisture value rather than four separate
values previously set according to Climate Class, as shown in Table 6.

To calculate live fuel moistures from GSI, daily woody or herba-
ceous GSI values (𝐺𝑆𝐼𝑓 ) are first rescaled based on the local, historical
maximum GSI for each live fuel type as follows:

𝐺𝑆𝐼 ′𝑓 =
𝐺𝑆𝐼𝑓

𝑀𝑎𝑥𝐺𝑆𝐼𝑓
(9)

where 𝐺𝑆𝐼𝑓 is the daily running average GSI, the subscript 𝑓 specifies
he live fuel type, 𝑀𝑎𝑥𝐺𝑆𝐼𝑓 is historical maximum 𝐺𝑆𝐼𝑓 used for
caling (1.0 by default indicates no scaling), and 𝐺𝑆𝐼 ′𝑓 is the rescaled
𝑆𝐼𝑓 value (0 ≤ 𝐺𝑆𝐼 ′𝑓 ≤ 1). 𝐺𝑆𝐼 ′𝑓 is only scaled over the max
istorical GSI value for each fuel type because GSI values generally
each 0 at most sites tested but in wet sites, GSI only reaches 0 for
few days each year (Jolly et al., 2005; Daham et al., 2019).

This rescaled value was found to be more robust than raw GSI values
ecause in some regions not all ramp function values simultaneously
xceeded their upper limits anytime during the observation record. For
xample, GSI ranges may only vary from 0 to 0.75 but the timing of the
nset and offset of the growing season were appropriate if they were
imply rescaled. It also ensures that a generalized green-up threshold of
.2 has the same meaning everywhere. Using the rescaled GSI values,
ive fuel moistures are then calculated for either herbaceous or woody
uels based on a linear transform above the green-up 𝐺𝑈𝑓 threshold as
ollows:

𝐹𝑀𝐶𝑓 =

{

𝑀𝑖𝑛𝑓 if 𝐺𝑆𝐼 ′𝑓 < 𝐺𝑈𝑓

𝑚𝑓 ∗ 𝐺𝑆𝐼 ′𝑓 + 𝑏𝑓 if 𝐺𝑆𝐼 ′𝑓 ≥ 𝐺𝑈𝑓
(10)

here the parameters 𝑚𝑓 and 𝑏𝑓 are defined by appropriate values in
y the following equations:

𝑓 =
𝑀𝑎𝑥𝑓 −𝑀𝑖𝑛𝑓
1.0 − 𝐺𝑈𝑓

(11)

𝑏𝑓 = 𝑀𝑎𝑥𝑓 − 𝑚𝑓 (12)

where 𝑀𝑎𝑥𝑓 , 𝑀𝑖𝑛𝑓 and 𝐺𝑈𝑓 are the upper and lower fuel moisture
imits and green-up threshold, respectively, defined for both live fuel
ypes in Table 6. Rescaling the GSI to GSI’ generally ensures that LFMC
alues reach the maximum values for each fuel type. However, in
ome areas GSI values will not drop the green-up threshold and thus
ill never reach minimum values. Additionally, local calibration of
inimum and maximum values by fuel type is allowed in the model

f sufficient field measurements are available for calibration.
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Fig. 3. Flow diagram of GSI-based Live Fuel Moisture Content calculations for herbaceous and woody fuels.
Table 6
Lower and upper fuel moisture limits and green-up thresholds used to calculate live
herbaceous and live woody fuel moisture content from the Growing Season Index.
Model parameter names are given in parenthesis.

Live Fuel
Category
[𝑓 ]

Min LFMC
(% dry wt)
[𝑀𝑖𝑛𝑓 ]

Max LFMC
(% dry wt)
[𝑀𝑎𝑥𝑓 ]

Green-up
Threshold
[𝐺𝑈𝑓 ]

Woody 60 200 0.2
Herbaceous 30 250 0.2

4.3.7. GSI live fuel moisture evaluation
GSI-based live fuel moisture estimates were compared to field-

measurements across six species measured in five US states ( Table 7).
Field measured live fuel moisture content data were extracted from
the US National Fuel Moisture Database (US National Fuel Moisture
Database, 2023, 2024). This database tracks, stores and displays real-
time fuel moisture measurements across the United States and it makes
those data available for use in both fire management and research
applications. These data are also available as part of the GlobeLFMC
Version 2.0 database (Yebra et al., 2024).

Daily weather data from each RAWS station was collected from
the Western Region Climate Center RAWS archive (Western Region
Climate Center, 2024). These data were imported into the FireFamily+
software package (FireFamily+, 2022) and used to calculate daily
maximum vapor pressure deficit and estimate herbaceous and woody
live fuel moistures from NFDRS Version 2. GSI-LFMC was modeled in a
Python 3.9 environment inside Jupyter notebooks and this workflow
is available here (Jolly et al., 2024). Modeled fuel moisture values
were compared to field-measured fuel moistures. Initially, GSI-LFMC
are estimated using default parameters from Tables 5 and 6 using a 28
day period for both the total precipitation and GSI smoothing and a
green-up threshold of 0.2.

In addition to testing the GSI-LFMC default parameters, we per-
formed a second analysis to assess model calibration ability using
local live fuel moisture content field measurements. We performed
a simple Grid Search Optimization (GSO) where random samples of
parameter combinations were computed and compared against field-
measured live fuel moistures to determine a set of parameters that
minimized the mean absolute error (MAE) between modeled and pre-
dicted herbaceous and woody live fuel moistures. The GSO iterated
7 
through 10,000 random combinations of parameters from the variable
ranges shown in Table 8 and returned the model parameters with the
highest correlation between measured and modeled LFMC. All GSO
code and simulation results are also provided in the Jupyter notebook
available on Github (Jolly et al., 2024).

In addition to varying the upper and lower limits of the ramp func-
tions, we allowed the smoothing period length (GSINDays in Eq. (8))
and the precipitation summarizing period (PrcpNDays to vary from 21
to 60 days, in Eq. (5)) and the green-up threshold (𝐺𝑈𝑓 in Eqs. 10
and 11) to vary from 0 to 0.8. Finally, rather than using the minimum
and maximum fuel moisture ranges carried over from Version 2, we
set 𝑀𝑖𝑛𝑓 and 𝑀𝑎𝑥𝑓 to the 5th percentile and 95th percentile of the
live fuel moistures measured at each location. All source code for the
GSI calculations and the Grid Search Optimization is provided in a
Python-based Jupyter notebook (Jolly et al., 2024).

4.4. Reducing the number of fuel models

The USNFDRS uses 20 fuel models in Version 2 and 20 similar,
but not identical, fuel models in Version 3 to represent a range of fuel
types across the country. However, over many years of experience, fire
managers have recognized that fire danger components and indexes
calculated with these fuel models exhibit very similar seasonal patterns,
even though the absolute magnitude of the values may differ. Multiple
fuel models that are not truly independent from one another adds
unnecessary complexity to the system for very little gain and since
USNFDRS components and indexes are most commonly applied as
percentiles (Heinsch et al., 2009), their absolute magnitudes are less
relevant. Further, fuel models used for fire danger rating are different
from the fuel models used for fire behavior simulation modeling, thus
adding complexity to training and operational use. Therefore, if Version
2 fuel model groups are better understood, a simpler, more general set
of fire danger fuel models that are anchored to fire behavior fuel models
may be derived to reduce complexity while ensuring independent
seasonal responses across a range of fuel types.

4.4.1. Fuel model evaluation
To identify fuel model similarities and explore existing groupings,

we simulated dead and live fuel moisture scenarios to compute ERC
across all 20 NFDRS Version 2 fuel models. We randomly simulated
50,000 1-h, 10-h, 100-h and 1000-h dead fuel moistures from 1% to
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Table 7
Live fuel moisture sampling sites used for comparison to and optimization of the GSI-based live fuel moisture model.

Site Name Measuring
Agency

State Species Weather
Station
(RAWS ID)

Lat/Long (DD)

Sevier
Reservoir

Filemore Field
Office (BLM)

UT Basin Big Sagebrush
(Artemesia tridentata)
Cheatgrass
(Bromus techtorum)

Sevier
Reservoir
(421501)

39.58◦/−112.0◦

Laurel
Canyon

LA County Fire CA Chamise
(Adenostoma
fasciculatum)

Beverly Hill
(045442)

34.12◦/−118.37◦

Angelina
(SE-TX-ANG)

Texas A&M
Forest Service

TX Yaupon
(Ilex vomitoria)

Lufkin
(413509)

31.31◦/−94.83◦

Hearst-Lead State of
South Dakota

SD Smooth brome
(Bromus inermis)

Spearfish
(SSFS)

44.349◦/−103.8◦

Humbug Salmon–Challis
NF

ID Pacific Ninebark
(Physiocarpus capitatus)

Idianola
(101303)

45.54◦/−114.03◦
Table 8
GSI input variables and ramp function ranges used for Grid Search Optimization of
GSI-derived Live Fuel Moisture Content.

Variable Units LowerLimit UpperLimit Steps

𝑖𝑉 𝑃𝐷𝑡 Pa 500 9000 500
𝑖𝑇𝑚𝑖𝑛𝑡 ◦C −5 10 1
𝑖𝐷𝑎𝑦𝑙𝑡 s 32,400 46,800 3600
𝑖𝑃 𝑟𝑐𝑝𝑡 mm 0 127 1

35% and live woody from 60% to 200% and herbaceous fuel moistures
from 30% to 250%. We then performed a cross-correlation analysis
to assess the similarities of ERC between Version 2 fire danger fuel
models. Correlations were further used in a cluster analysis to group
similar fuel models into distinct fuel types. Once established, these
fuel type groups served as the basis for the Version 4 fire danger fuel
models and were assigned a new, unique alphabetical code. Physical
parameters for the reduced fire danger fuel models (i.e., loading by
size class and category, SAV ratio, bed depth, etc.,) were taken directly
from existing fuels models used for fire behavior modeling in the United
States (Scott, 2005). Finally, the Version 4 fuel model behavior was
also assessed and compared to the Version 2 models. These one-for-
one match-ups align fire danger and fire behavior fuel models and
eliminates the need to train firefighters on two separate sets of fuel
models for fire danger and fire behavior applications. All source code
for the fuel model comparisons and subsequent publication figures is
provided in a Python-based Jupyter notebook (Jolly et al., 2024).

4.5. USNFDRS versions 2 and 4 comparisons

Individual fire danger rating systems are typically evaluated sepa-
rately by assessing the capability of each to predict the location and
timing of fire activity (Andrews et al., 2003; Viegas et al., 1999). Here
we first compared USNFDRS Version 2 and Version 4 directly to assess
similarities and differences in their seasonality and their efficacy to
predict wildfire occurrence. Since part of the rationale for revising the
USNFDRS is to simplify and automate the system, the standard for
assessing Version 4 is based on whether the updates resulted in any
loss of predictive capability. Additionally, we explore how Version 4
performs when used to differentiate between days with wildfires (Fire
Days), days when large wildfires (fire greater than the local 97%ile fire
size), or distinguishing the conditional probability of a large fire given a
fire day and we explore the best indices and fuel models for prediction
of each wildfire event. All comparison dates between fire danger indices
and fire activity are the dates the fires were reported, regardless of how
many days the fires burned to reach their final fire size (Andrews et al.,

2003).

8 
4.5.1. Site selection and data processing
Six evaluation sites spanning a range of climate, fuels and topog-

raphy were selected from National Forest System lands across CONUS:
the Okanogan–Wenatchee National Forest (NF), the Lolo NF, the Little
Missouri National Grassland (part of the Dakota Prairie Grasslands), the
Angeles NF, the Prescott NF, and the Apalachicola NF. Administrative
boundaries were used to select weather stations and to spatially clip
historical fire activity records. Weather station catalogs containing
metadata about the RAWS location were downloaded from the National
Fire and Aviation Management Web Applications website (FAMWEB)
and hourly weather data was downloaded from the Wildland Fire
Assessment System (WFAS) fire weather data file interface. Federal,
state and local fire records containing information about the discovery
date, origin location and final size of reported wildland fires were
obtained from the Fire Program Analysis Fire Occurrence Database,
FPA FOD (Short, 2014). All years from 2003–2017 and all days from
Jan–Dec were included in the analysis.

Station catalogs, hourly weather data, and historical fire records
were loaded into the latest version of FireFamily Plus (FF+5.0) to
generate a synchronized daily time series of fire danger and fire activity
for each evaluation site. Both USNFDRS Versions 2 and 4 were used
to calculate all fire danger metrics (i.e., ERC, BI, SC and IC) at every
RAWS location once daily at the standard observation hour (typically
either 1200 or 1300 local time). All Version 4 calculations use the
default GSI-to-LFMC conversion parameters discussed above. Moreover,
whilst Version 2 was limited to fuel model G, Version 4 was run using
all five updated fuel models (i.e., V through Z). Spatially averaging
the RAWS-based calculations yielded four daily time series for Version
2 (i.e., four metrics × one fuel model) and 20 daily time series for
Version 4 (i.e., four metrics × five fuel models) for every evaluation
site. Since climate varies between evaluation sites, and since Version
2 and Version 4 produce fire danger ratings on different absolute
scales, all daily time series were converted to percentiles to facilitate
comparisons (Heinsch et al., 2009). For each evaluation site, the 100th
and 0th percentiles indicate the locally highest and lowest daily fire
danger recorded between 2003 and 2017.

Fire activity records from the FPA FOD (Short, 2014) were distilled
into binary time series of fire-days (FD) and non-fire-days (NFD). A fire-
day is a standard measure of fire activity (Haines et al., 1983) and is
defined as a 24-h period during which at least one new wildland fire
was reported within an evaluation site. The largest, individual, final
fire size reported on a fire-day was also retained. This enabled the
construction of binary time series of large-fire-days (LFD), where a LFD
is defined as a 24-h period during which at least one new wildland
fire was reported and eventually exceeded a certain size threshold.
Final fire size thresholds used to define a LFD were unique for every
evaluation site and were set to the 97th percentile of the historical fire

size distribution.
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Fig. 4. Comparisons of modeled and measured live fuel moisture content across three
species for five years (2015–2019). Top panel shows comparison of old NFDRS V2
modeled LFMC to observations, middle panel compares new GSI-based LFMC using
default or out-of-the-box parameters, bottom panel shows the final results of Grid
Search Optimized (GSO) GSI-based LFMC compared to field measurements. Correlations
between measured and modeled LFMC for NFDRS Version 2 were 0.33 (Top) and
correlations for NFDRS Version 4 LFMC values using default parameters (Middle) were
0.78 and were 0.84 when parameters were optimized by species and site using the
GSO.

4.5.2. Evaluation
The USNFDRS is often used to convey the local seasonality of fire

danger to outside incident management teams and firefighters (An-
drews et al., 1998). To avoid large day-to-day fluctuations, seasonal
9 
Fig. 5. Seasonal plots of Grid Search Optimized GSI-based live fuel moisture contents
compared to field measured values for Bromus tectorum (Top), Artemisia tridentata
(Middle) and Adenostoma fasciculatum (Bottom). Overall, we see good agreement
between the seasonality of modeled and measured live fuel moistures for both an
herbaceous and two woody species.

profiles are typically generated using fire danger metrics less influenced
by wind and fuel models less influenced by fine dead fuels. Hence ERCs
were selected here as the seasonal fire danger metric, and since only
fuel model G was used in Version 2, its counterpart fuel model Y was
selected here for Version 4. Daily time series of ERC(G) and ERC(Y)
at each evaluation site were converted to seasonal profiles of 15-yr,
monthly mean percentiles and compared between Versions 2 and 4.
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Given the influence of wind and fine dead fuel moisture content
on new wildfire ignitions and their initial spread, associations between
fire danger and fire activity are also performed on a daily basis. Several
analytical techniques have been developed to evaluate the ability of fire
danger rating systems to predict fire activity (Viegas et al., 1999; An-
drews et al., 2003). Here we select the receiver operating characteristic
(ROC) curve, a tool commonly used to assess the performance of fire
occurrence models (Vilar et al., 2010; Zhang et al., 2016; Barreto and
Armenteras, 2020). The ROC curve and the Area Under the ROC Curve
(AUC) objectively quantify whether a fire danger metric is any better
at making predictions compared to random guessing. This requires two
synchronized time series: one for the fire danger metric and one for the
binary indicator of fire activity (i.e.,‘‘1’’ versus ‘‘0’’). The ROC and its
integral the AUC were used to assess the ability of fire danger metrics
calculated from Versions 2 and 4 to distinguish (i) fire-days from non-
fire-days (FD = 1 | NFD = 0), (ii) large-fire-days from non-fire-days
(LFD = 1 | NFD = 0), and (iii) large-fire-days from fire-days (LFD = 1

FD = 0).
In the analysis, the continuous fire danger rating is used as a classi-

ier such that setting a single fire danger threshold splits the predictions
nto two classes. Days when fire danger is below the threshold are
redicted as zeros, and days when fire danger is above the threshold
re predicted as ones. At each threshold there exists a true positive rate
TPR) and a false positive rate (FPR). Calculating TPR and FPR over all
ossible thresholds along the fire danger continuum and plotting them
gainst each other yields the ROC curve. Integrating the ROC curve
ields the AUC. Values for the AUC near 0.5 indicate the fire danger
etric is no more useful at making predictions than random guessing.
igher values for the AUC indicate improved prediction performance,
nd values of AUC=1.0 indicate perfect predictions (i.e., distributions
f fire danger on fire-days and non-fire-days do not overlap and are
ompletely separated). When comparing fire danger ratings gener-
ted from Version 2 and Version 4, the one with the higher AUC is
onsidered to have better predictive capability.

. Results

.1. Live fuel moisture modeling

Of the six species tested, only cheatgrass, yaupon and smooth brome
howed a significant correlation between NFDRS Version 2 modeled
FMC and the field-measured values (Table 10). For all species tested,
he LFMC modeled with Version 2 generally undepredicted the field
easurements (Fig. 4) and overall the Version 2 live fuel moisture
odel failed to capture the LFMC dynamics for these species.

In contrast, the Version 4 GSI-LFMCs showed better correlations and
ower MAE than the Version 2 values. GSI-LFMC calculated using the
efault parameters from Tables 5 and 6 were all significantly correlated
ith LFMC measured for the six test species (𝑝 < 0.01). Correlations
etween modeled and measured LFMC ranged from a low of 0.381
𝑟2 = 0.205) in Yaupon to a high of 0.789 (𝑟2 = 0.638) for Cheatgrass.
dditionally, MAE was as much as three times lower between Version
and Version 4 (default) LFM contents where MAE was lowest for

hamise (17.9%) and highest for Pacific ninebark (64.3%).
Correlations also improved dramatically when GSI-LFMC param-

ters were calibrated with a Grid Search Optimization (GSO). Final
ptimized GSI-LFMC parameters are given in Table 9. Correlations
anged from 0.727 (𝑟2 = 0.461) for Yaupon to 0.924 for cheatgrass
𝑝 < 0.01) and MAE were reduced and ranged from 13.3% for Chamise
o 46.3% for cheatgrass. Optimized GSI-LFMC values showed very good
greement with the seasonal dynamics of each of the six species over
ultiple measurement years (Fig. 5.

When pooled across all six species (N = 346), NFDRS Version
LFMC were poorly related to field-measured LFMC (𝑟2 = 0.076,
< 0.01)(Fig. 4, Top Panel). In contrast, NFDRS Version 4 GSI-LFMC,

alculated using the default parameters, showed a strong correlation
10 
ith field measured values (𝑟2 = 0.629, 𝑝 < 0.01) (Fig. 4, Middle
anel) and when each species response was optimized using GSO before
eing pooled, overall correlations were even higher (𝑟2 = 0.693, 𝑝 <
.01 (Fig. 4, Bottom Panel). Overall, this suggests that default GSI
arameters should be a good starting point for modeling site-specific
FMC and if field measurements are available, model dynamics can be
mproved through a simple parameter optimization.

.2. Fuel model reductions

ERC values from 50,000 simulated live and dead fuel moisture
cenarios showed that Version 2 fuel models (A - U) are strongly cross-
orrelated across fuel type groups. A summary of the cross-correlations
etween USNFDRS Versions 2 and 4 fuel models is shown in Fig. 6.
ighteen of the 20 NFDRS Version 2 fuel models showed at least one
orrelation with another fuel model that was greater than 0.85. More-
ver, fuel models I, J and K (slash) were nearly perfectly correlated
ith each other (r > 0.999) and showed cross-correlations greater than
.85 with as many as 7 other fuel models.

Cross-correlations between fuel model-specific ERC values shown in
ig. 6 revealed some unique groupings amongst Version 2 fuel models.
imulated ERC values based on the LFMC for annual and perennial
rass fuel models such as A and L were similar to one another but
ifferent from other fuel models. Timber models such as G and H also
lustered together while grass/shrub and brush based models formed
large cluster. Ultimately, Version 2 fuel models clustered into five

uel type groups, which were then assigned their own fuel model
arameters and a new NFDRS Version 4 alphabetical code: grass (V),
rasses/shrubs (W), brush (X), timber (Y) and slash (Z). Correlations
etween Version 4 and Version 2 fuel models, as well cross-correlations
etween Version 4 fuel models themselves, are shown in Fig. 6. Finally,
ased on the NFDRS Version 4 fuel type groups, we identified the
losest matching fire behavior fuel model, as summarized in Table 11
nd a cross-walk between Version 2/3 and Version 4 fuel models in
able 12 based on the hierarchical clustering of the Version 2 and
ersion 4 fuel models. Cross-correlations between the five new Version
fuel models showed that none of the models had a correlation

reater than 0.85 with any of the other Version 4 fuel models (Fig. 6),
uggesting that condensing fuel models into fuel type groups yields a
et of five fuel models that are unique.

.3. USNFDRS versions 2 and 4 comparisons

Maps of the administrative boundaries and RAWS locations within
he six evaluation sites are shown in Fig. 7. As desired, the broad
eographic selection of evaluation sites captured the diverse seasonality
f fire danger across CONUS. Based on long-term (15-yr) minimum and
aximum monthly mean ERC percentiles, respectively, the lowest fire
anger was identified by Version 2 fuel model G or Version 4 fuel
odel Y in at least one evaluation site every month from December

o March, whilst the highest fire danger was identified in at least
ne evaluation site every month from May through August. A specific
xample for the Lolo NF demonstrates good seasonal agreement where
oth Versions 2 and 4 identified February has having the lowest fire
anger and August as having the highest fire danger (Fig. 8a). Good
easonal agreement extended beyond the Lolo NF where long-term,
onthly mean percentiles generated by Versions 2 and 4 were strongly

orrelated (𝑟2 = 0.94) across all six evaluation sites (Fig. 8b)
Even during a single month the range of daily fire danger compo-

ents and indexes can vary greatly. For example, in the Lolo NF during
pril, daily mean values for Version 2 ERC(G) and Version 4 ERC(Y)
anged from the 29th to the 53rd percentile, and from the 27th to the
9th percentile, respectively (Fig. 8a). The range of values for any sin-
le, individual day varied even more. These high frequency day-to-day
luctuations are the reason why daily fire danger metrics are associated
ith daily occurrences of new wildland fires. For Version 2 ERC(G)
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Table 9
Grid Search Optimized GSI-LFMC parameters for six common, fire-prone live fuels. Parameters were fit by simulating 10,000 combinations of parameters and minimizing the MAE
between modeled and predicted values.

Variable Minimum

Temp

Vapor
Pressure
Deficit

Daylength Running
Total
Precip

PrcpNDays Greenup
Threshold

GSINDays

Units (◦C) (Pa) (s) (inches) (days) (days)

Lower/Upper Limits (𝛼∕𝛽) (𝛼∕𝛽) (𝛼∕𝛽) (𝛼∕𝛽)

Cheatgrass
(Bromus tectorum)

−4/−1 2000/5500 32400 /43200 0.2/0.8 50 0.2 50

Basin Big Sagebrush
(Artemesia tridentata)

−5/−1 2000/4000 32400 /43200 0.1/0.4 59 0.2 59

Chamise
(Adenostoma
fasciculatum)

−4/0 2500/4000 32400/36000 1.5/3.0 55 0.0 55

Yaupon
(Ilex vomitoria)

−3/7 1000/6000 39600/43200 1.2/4.4 49 0.5 49

Smooth brome
(Bromus inermis)

−1/8 1000/2000 32400/43200 0.5/1.9 21 0.1 21

Pacific Ninebark
(Physocarpus capitatus)

−5/−1 2000/4000 32400/43200 0.1/0.4 42 0.2 42
Table 10
Results of comparisons between modeled and measured live fuel moisture content (LFMC) for six fire prone plant species in the United States. Spearmans’ rank order correlations
(𝜌𝑆 ), the 𝑟2 from an Ordinary Least Squares regression and Mean Absolute Error (MAE) are reported for each comparison.

NFDRS Version 2.0
Live Fuel Moisture
Model

NFDRS Version 4.0
Live Fuel Moisture
Model

LFMC Model Version Burgan (1979) GSI LFMC

Parameters N/A Default Grid Search Opt

Cheatgrass 𝜌𝑆/𝑟2 0.289/0.078* 0.789/0.638*** 0.924/0.854***
(Bromus tectorum) MAE (68.6%) (27.6%) (23.9%)

Basin Big Sagebrush 𝜌𝑆/𝑟2 −0.165/0.00NS 0.749/0.561*** 0.880/0.774***
(Artemesia tridentata) MAE (59.6%) (37.9%) (38%)

Chamise 𝜌𝑆/𝑟2 0.180/0.0007NS 0.586/0.343*** 0.821/0.716***
(Adenostoma fasciculatum) MAE (25.9%) (17.9%) (13.3%)

Yaupon 𝜌𝑆/𝑟2 0.467/0.195*** 0.381/0.205*** 0.727/0.461***
(Ilex vomitoria) MAE (30.2%) (34.2%) (17.8%)

Smooth Brome 𝜌𝑆/𝑟2 0.865/0.653*** 0.781/0.620*** 0.881/0.583***
(Bromus inermis) MAE (70.0%) (34.3%) (46.3%)

Pacific Ninebark 𝜌𝑆/𝑟2 0.065/0.000NS 0.643/0.441*** 0.792/0.60***
(Physiocarpus capitatus) MAE (78.7%) (64.3%) (36.0%)

Significance indicators are as follows: ∗= 𝑝 < 0.05, ∗∗= 𝑝 < 0.01, ∗∗∗= 𝑝 < 0.001, NS = Not Significant.
able 11
ew fire danger fuel models for NFDRS Version 4 and their mappings to fire behavior

uel models (FBFMs) from Scott and Burgan (2005). Full parameter listings are given
n Andrews (2018).

NFDRS Version 4: Fire Behavior Fuel Model:
Code Fuel Type Equivalent Code

V Grass Grass 2 GR2 (102)
W Grass-Shrub Grs-Shrub 2 GS2 (122)
X Brush Shrub 9 SH9 (149)
Y Timber Timber litter 1 TL1 (181)
Z Slash Slash-Blowdown 2 SB2 (202)

and Version 4 ERC(Y), results of the ROC analysis revealed AUC values
of 0.78 and 0.85 in the Lolo NF, respectively, indicating that updates
have improved the ability of the USNFDRS to distinguish fire-days from
non-fire-days. In general, these improvements are widespread. All AUC
values reported for Version 4 fuel model Y are above 0.6 regardless
of fire danger metric or evaluation site (Fig. 9), indicating better than
random predictions when using the new timber fuel model. Of the 24
comparisons generated from the combination of six evaluation sites and
four fire danger metrics (i.e., ERC, BI, SC and IC), AUC values from
11 
Table 12
Fuel model cross-walk table between new NFDRS V4 and old NFDRS V2/V3 fuel models
based on the correlogram in Fig. 6 and a correlation threshold of 0.8. Note: Fuel models
W and X have similar balances of live and dead loading, so care should be chosen when
selecting a cross-walk fuel model.

Fuel Type V4 FM V2/3 FM

Grass V A,L
Grass-Shrub/Brush W/X B,F,C,R,U,T,N,E,D
Timber Y H,P,G
Slash Z O,Q,S,I,K,J

Version 2 fuel model G and Version 4 fuel model Y were significantly
different on 10 occasions, leaving 14 comparisons where predictions
from Version 2 and Version 4 were not distinguishable from one
another. Of the 10 occasions that were significantly different, Version 4
outperformed Version 2 for 8 of them, leaving just 2 out of 24 occasions
where Version 4 under-performed Version 2.

Results for all combinations of evaluation sites, fire danger met-
rics and Version 4 fuel models revealed that ERC(Y) emerged as the
best at distinguishing fire-days from non-fire days (Table 13), reflect-

ing the synchronized seasonality of new wild fire occurrences and
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Fig. 6. Correlogram comparing 50,000 simulated Energy Release Component (ERC) values computed from combinations of dead and live fuel moisture scenarios applied to NFDRS
Version 2 (A - U) and Version 4 (V - Z) fuel models. Numbers and colors indicate the strength of the correlations between fuel models.
fire danger primarily driven by large dead fuel moistures. Values for
AUCs universally increased for each evaluation site when distinguishing
large-fire-days from non-fire-days. New wildfires that escape initial
attack are often started when conditions are more conducive to large
fire growth; hence the better separation in the fire danger distributions
and the higher AUCs. Also note the emergence of BI and thus the role
of wind on large fire growth. Compared to non-fire-days which occur
mostly outside of the fire weather season, large-fire days and fire-days
generally coincide at the same time of year. The lower AUCs when
distinguishing large-fire-days from fire-days is likely due to such sim-
ilar fire danger conditions. Nevertheless, large-fire-days can be better
differentiated from fire-days by using metrics that capture the influence
of wind (e.g., BI and SC) as well as the fine fuels (e.g., fuel models V
and W) on the rapid growth of initiating wildfires.

6. Discussion

6.1. NFDRS version 4 updates

Fire danger rating systems are a critical component of any wildland
fire preparedness and response decision support system but they must
be maintained to keep pace with scientific and technological advance-
ments in order to meet the evolving needs of wildland fire decision
makers. The Version 4 updates to USNFDRS incorporate the latest re-
search in fire environment modeling while also positioning developers
to continually improve the system over future decades. The methods
used to perform these updates retain the same components and indices
output by Versions 1 through 3 while leveraging the modular design
to seamlessly replace antiquated dead and live fuel moisture models
and simplify the fuels representation within the system. Despite these
12 
changes and simplifications, this new system reproduces or exceeds the
predictive power of the old system while eliminating the need for daily
and seasonal intervention. Ultimately, these system changes pave the
way for more robust future applications of USNFDRS.

6.1.1. Dead fuel moisture model updates
This USNFDRS revision has many improvement over the previous

versions but there are still challenges for future development. For ex-
ample, the Nelson–Carlson dead fuel moisture model provides a simpler
implementation for modeling timelag fuel moistures but the model does
pose some computation challenges for fine dead fuel moistures. Inter-
nally, the frequency of moisture computation time steps is inversely
proportional radius of the fuel. This means that model speed increases
with decreasing stick/fuel diameters. Ultimately, future work should
focus in part on optimizing these radius-dependent model parameters
to maximize dead fuel moisture model performance.

6.1.2. Live fuel moisture model updates
The GSI-based live fuel moisture model implemented in Version 4

is a significant improvement over the old USNFDRS live fuel moisture
model but it is still a simplification/generalization of the live fuels
present on a given site. USNFDRS live fuel moistures are meant to
capture the average change in growing conditions and will not likely
represent every species at every site. As such, these modeled fuel
moistures will not always compare well to seasonal measured live
fuel moistures. The analysis of GSI-based live fuel moisture content
values presented here is meant to be illustrative and is by no means
exhaustive. Future work should focus on understanding how GSI be-
haves in different climate and for different plant functional types.
Preliminary explorations revealed that leveraging local climatologies to
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Fig. 7. Six evaluation sites used to compare USNFDRS Version 2 and Version 4. (A) the Okanogan–Wenatchee National Forest (NF), (B) the Lolo NF, (C) the Little Missouri
National Grassland, (D) the Angeles NF, (E) the Prescott NF, and (F) the Apalachicola NF. Remote Automated Weather Stations (RAWS) are labeled ‘‘Wx’’. The wheels qualitatively
illustrate the seasonality of fire danger characterized by the long-term (15-yr) monthly mean Energy Release Component (ERC) percentile. The inner wheel corresponds to Version
4 fuel model Y, and the outer wheel corresponds to Version 2 fuel model G. Color wheels are scaled from the minimum (green) to the maximum (red). Long-term, monthly mean
percentiles of ERC(G) and ERC(Y) are quantitatively compared in Fig. 8b.
Fig. 8. Demonstration of the seasonal agreement between USNFDRS Version 2 and Version 4. (a) Long-term (15-yr) mean daily (lines) and mean monthly (bars) time series of
Energy Release Component (ERC) percentiles for Version 2 fuel model G and Version 4 fuel model Y on the Lolo National Forest. (b) Correlation between long-term, monthly mean
ERC percentiles for Version 2 fuel model G (x-axis) and Version 4 fuel model Y (y-axis) for all evaluation sites (n = 72 = 6 evaluation sites 𝑥 12 months per year). Long-term
mean monthly comparisons are also illustrated qualitatively as seasonal wheels in Fig. 7.
calibrate ramp function ranges for variables such as VPD could provide
a simple way to spatially calibrate GSI either by weather station or
using gridded weather inputs. Additionally, the lower and upper limits
for both herbaceous and woody fuel moisture contents are very general
and we found that relationships were improved when species-specific,
local ranges were used. It is possible that the model could be designed
to self-calibrate when provided with local field measurements of both
dead and/or live fuel moisture. Ultimately, more work is needed to
provide better, more localized baseline calibration of the GSI-LFMC
model as well as better representations of the differences between leaf
life spans such as evergreen and deciduous plants.
13 
The GSI-LFMC method incorporates elements of previous NFDRS
LFMC modeling (V3 and earlier), including assigning minimum and
maximum LFMC values based on fuel type. While default minimum and
maximum LFMC values for herbaceous and woody fuels are 30%/250%
and 60%/200% respectively, our research indicates that using locally
determined ranges for these values improves model accuracy. However,
species in wetter climates, such as the Southeast Texas Yaupon we
tested, might not attain these lower default values. Minimum woody
LFMC values across all four of our woody fuel evaluation sites was 55%,
which is close to the default of 60%, but Yaupon only reached a historic
minimum of 91%. Maximum values across all species were 279% for
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Table 13
Results of the evaluation distilled into the combination of fire danger metric and fuel model (FM) that provides the best discrimination (i.e., the highest AUC) between (i) fire-days
(FDs) and non-fire days (NFDs), (ii) large-fire-days (LFD’s) and NFD’s, and (iii) LFD’s and FD’s. From 2003–2017 there were a total of 5479 days, of which the number of fire-days
(# FD) and large-fire-days (# LFD) for each evaluation site are presented in the left most column along with the size threshold (97th percentile) used to identify large fires.

Evaluation Site FD | NFD LFD | NFD LFD | FD
# FD, # LFD and Large Fire Threshold AUCmax Metric(FM) AUCmax Metric(FM) AUCmax Metric(FM)

Angeles NF
1936, 78 and 27 ha

0.685 ERC(Y) 0.786 BI(Y) 0.701 BI(Z)

Apalachicola NF
482, 16 and 179 ha

0.696 ERC(Y) 0.789 SC(W) 0.647 SC(V)

Little Missouri National Grassland
213, 9 and 127 ha

0.742 ERC(Z) 0.915 ERC(Y) 0.772 BI(W)

Lolo NF
1204, 71 and 10 ha

0.853 ERC(Y) 0.897 ERC(Y) 0.802 ERC(W)

Okanogan–Wenatchee NF
1081, 76 and 110 ha

0.853 ERC(Y) 0.900 ERC(Y) 0.719 ERC(Y)

Prescott NF
697, 29 and 28 ha

0.676 ERC(Y) 0.790 ERC(Y) 0.679 ERC(X)
Fig. 9. Comparisons between the Area Under the Receiver Operating Characteristic
(ROC) Curve (AUC) determined from historical associations between fire occurrence
data and fire danger metrics output from NFDRS Version 2 fuel model G (x-axis) and
Version 4 fuel model Y (y-axis). All six evaluation sites are included (Fig. 7) and each
has four comparisons (i.e., one per fire danger metric: ERC, BI, SC, and IC) to provide
𝑛 = 24 observations.

herbaceous and 304% for woody fuels. Our findings highlight the need
for further research to establish regional seasonal limits and extremes
for herbaceous and woody LFMC values by fuel type.

6.1.3. Fuel model simplifications
Simplifying the fuel models in the USNFDRS is helpful for training

system users but it can also provide more robust ways to assess fire
danger changes across regions. Landcover maps exist that can easily
distinguish between grasses, shrubs, brush and timber and these fuels
maps could be used to assess the local impacts of climatic changes
on fire potential. Historically, applications of USNFDRS to assess re-
gional fire potential changes have ignored fuel type differences and
constrained analyses to a single fuel type. This new, simple fuel type
description could allow future studies to contrast the differential re-
sponse of fire potential across plant functional types both historical and
into the future. An example NFDRS V4 fuel model map is presented in
Fig. 10. This map was derived from the LANDFIRE fire behavior fuel
models map that was aggregated by fuel types (https://www.landfire.
14 
gov/lf_230.php). These maps could be the foundation of a fully gridded
fire danger forecast system in the future.

Historically, many studies have emphasized the use of a fixed index
and fuel model for NFDRS, such as the Energy Release Component for
Fuel Model G, to standardize model behavior across large regions (An-
drews et al., 2003; Riley et al., 2013; Abatzoglou, 2013; Jolly et al.,
2015). Our results suggest that explorations of the relationships be-
tween fire weather and fire activity may be strengthened by exploring
the interaction and local sensitivity of fire danger indices to fine and
coarse dead fuel moisture as well as live herbaceous and woody fuel
moisture. Large fire activity for each region tested in this study was
best characterized by different fuel models and indices (Table 13). Fuel
model V is only a mixture of fine dead fuel (1 h) and herbaceous fuels,
while fuel models W and X are a mixture fine dead fuels (1 and 10 h)
and both live woody and herbaceous fuels. Fuel models Y and Z do
are not sensitive to live fuels but each have different distributions of
fine and coarse dead fuel loadings. Large fire probabilities at four of
the six USNFDRS V4 model evaluation sites were best predicted using
fuel models with live fuels (LFD|FD column in Table 13). In contrast,
Fire Days (which are analogous to predicting ignition probability) were
best predicted at each evaluation site using just the Energy Release
Component and fuel models that only have dead fine and coarse fuels.
Those fuel models, Y and Z, are essentially similar or equivalent to the
old Fuel Model G. Overall, this suggests that USNFDRS Version 4 could
improve our understanding of the factors that influence the times and
places of new wildfire ignitions as well as the contrasting factors that
lead to the development of large fires.

6.2. System user feedback

Components of this revised USNFDRS have been implemented in
operational tools for the last 12 years. For example, the Nelson–Carlson
model was built into the Weather Information Management System
and the values have been monitored and locally compared to fire
activity and this dead fuel moisture model was built into fire behav-
ior simulators such as FlamMap to provide spatio-temporally variant
fine fuel moistures (Finney, 2006). Additionally, the GSI-LFMC models
have been built into the Wildland Fire Decision Support System since
2010 as an optional way to determine live fuel moisture contents for
probabilistic fire behavior simulations (Noonan-Wright et al., 2011)
and the Growing Season Index has been incorporated into FireFamily+
since 2010. These field tests of the sub-models have allowed us to
understand their behavior across a variety of ecosystems and socialize
their implementation into USNFDRS over time.

Our updates to the US National Fire Danger Rating System started
in 2016 and the final model version was accepted for operational,
nationwide use in March 2023. Feedback was captured both from

https://www.landfire.gov/lf_230.php
https://www.landfire.gov/lf_230.php
https://www.landfire.gov/lf_230.php
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Fig. 10. Example NFDRS Version 4 fuel model maps derived from the Scott and Burgan 40 fuel models from LANDFIRE (Rollins, 2009) (Version 2.3.0 (2022)). Fuel type maps
like this may help expand the way that NFDRS4 is implemented across large landscapes with highly varying vegetation types.
the initial integration of the models into the Weather Information
Management System (WIMS) starting in 2017 and from field users over
the 2023 fire season. Some critical observations were made of the full
Version 4 implementation. Generally, users observed that the Version
4 model performs as well or better than Version 2 with a few caveats.
First, the lack of live fuel loading in Fuel Model Y means that fire
danger is sometimes over-rated during unusually hot/dry periods even
if the live fuels are not available to burn. Additionally, the lack of
moderate and heavy dead fuel loading in Fuel Model X leads to an index
that is very responsive to live fuel conditions and day-to-day variations
in weather but that is not equally responsive to longer-term dryness
over weeks or months. We also observed some challenges implementing
GSI locally but many of these challenges were mitigated when the
final precipitation control was added. Local calibration procedures
documented here will help provide better system outputs for live fuel
dominated systems. Our intent is to leverage these lessons learned to
guide the development of future improvements to the fuel moisture
models and fuel models as part of USNFDRS Version 5.

6.3. Other limitations and future needs

6.3.1. Needs for better drought metrics/indices
Drought is an important component of wildland fire potential but

historically, with the exception of the McArthur Forest Fire Danger
Index and the Drought Code of the Canadian Forest Fire Danger Rating
System, most fire danger rating systems do not include any long-
term drought metrics that quantify water deficits over monthly scales
or longer. While the Keetch–Byram Drought Index is included in the
USNFDRS, its performance across a wide range of biomes is var-
ied (Krueger et al., 2022). The simplified water balance of KBDI heavily
focuses on water loss through transpiration but mainly ignore losses
through evaporation. As such, future NFDRS versions must be built to
15 
use new or emerging drought indices that implement a more complete
representation of the site water balance. Within USNFDRS, the Drought
Fuel Loading variations (from USNFDRS Version 3) are driven by
KBDI (Burgan, 1988) and they can affect the seasonal ranges of fire
danger indices during drought conditions by adding more available fuel
across the dead fuel size classes proportional to their initial loadings.
Therefore, KBDI alone can impact the dynamics of computed indices
independent of live and dead fuel moisture. If KBDI does not perform
equally across the country it could lead to inconsistencies in regional
fire danger. Thus it is desirable to have a more robust and generalized
drought index that is tested globally for use as a replace to KBDI in
USNFDRS.

6.3.2. Needs for better fire danger components and indices
The core fire danger components and indices models, such as the

Energy Release Component, Spread Component, Ignition Component
and the Burning Index, used in USNFDRS are based on the fire spread
model is based on Rothermel (1972). This model has been staple in
fire operations and research for over 50 years but it is antiquated. New
three-dimensional computational fluid dynamics-based fire behavior
models, such as FIRETEC (Linn et al., 2002) and the Wildland-Urban
Interface Fire Dynamics Simulation (WFDS) (Mell et al., 2007), have
emerged to assess relationships between fuels, weather, terrain and
fire behavior characteristics such as rate-of-spread and intensity. Future
work should explore ways to leverage these models in numerical ex-
periments to create simplified equations to replace the core fire danger
component/index models with more robust and modern fire behavior
assessment tools.

6.3.3. Needs for higher resolution fire danger observations and forecast
This new USNFDRS revision also paves the way to leverage geospa-

tial analysis and forecast weather data to transform how we deliver



W.M. Jolly et al. Environmental Modelling and Software 181 (2024) 106181 
fire hazard/danger information in the future. Previous version of US-
NFDRS required manual user inputs such as the State-of-the-Weather
and Green-up dates (Deeming et al., 1977) that were difficult to de-
rive spatially but the implementation of the Nelson–Carlson dead fuel
moisture model the GSI-based live fuel moisture model have made the
USNFDRS V4 fully automated and able to characterize dead and live
fuel dynamics, and subsequent fire danger components and indices,
spatially using gridded weather, fuels and terrain information. Future
work can also include the integration of forest canopy densities to
better characterize ‘Wind Adjustment Factors (WAFs)’ used to estimate
near-surface windspeeds (Massman et al., 2017) and to better scale
these WAFs over space and time (Sutherland et al., 2023). Addi-
tionally, linking canopy fuel dynamics from biogeochemical cycling
models to characterize dynamic surface fuel loads may further improve
geospatial predictions of fire danger, especially in areas with deciduous
overstories (Eastaugh and Hasenauer, 2014). Finally, even with these
spatio-temporal assessments of fire hazard (danger), future systems
should consider the integration of socio-economic factors and responder
exposure to better prepare for and mitigate risk to communities and
firefighter (Chuvieco et al., 2023).

6.3.4. Needs for improved fire danger metric evaluation
Comparing USNFDRS Versions 2 and 4 has reinforced the simplicity

and utility of the ROC and AUC for assessing the ability of fire danger
components and indices to capture the weather and fuels conditions
conducive to new wildfire occurrences. Future work should consider
incorporating these techniques and metrics into FireFamily Plus where
they can be used in more practical applications, such as developing
Fire Danger Operating Plans (FDOPs). Fire danger rating systems – and
particularly the USNFDRS – have traditionally been used to predict
new fire activity. This has partly been due to the original intent of
the USNFDRS (i.e., representing conditions at the head of an initiating
surface fire) and the availability of historical fire occurrence data that
only contains a record of the origin location and discovery date of
newly reported wildfires. However with daily fire observations ob-
tained from incident status summary (ICS-209) forms (St. Denis et al.,
2023) or from satellite based active fire products (Schroeder et al.,
2014; Giglio et al., 2016), recent efforts have demonstrated that beyond
the ability to predict new fire activity, fire danger has the potential to
predict fire activity after ignition (Freeborn et al., 2015). Future work
should consider developing a streamlined process for loading daily fire
observations (e.g., active fire pixel counts and/or fire radiative power)
into FireFamily Plus for evaluating the capability of the USNFDRS
to predict ongoing fire activity beyond the discovery date. Together,
relationships between fire danger, new fire-days and active-fire-days
offer an opportunity to cover the full spectrum of fire management
scenarios, from planning prescribed fires, to preparing for initial and
extended attack, to monitoring fires for resource benefit.

6.4. Components of a fire danger rating system

The term ’Fire Danger Rating System’ is often a misnomer because
the term is often used to describe a numerical model and not the full
system required to support its use. In reality, the system needed to
actually use the fire danger information to support decision making is
much broader. A well-formed Decision Support System (DSS) has five
components (Stanescu and Filip, 2011): 1.) Model base, 2.) Database,
3.) Knowledge engine, 4.) User Interface/User Experience (UI/UX) and
5.) Users/Stakeholders (Fig. 11). Model bases, like the fire danger
model presented in this paper, form the backbone of the system but the
model base alone is insufficient to provide realtime decision support
tools to users. It must be supported by a real-time database of fuels,
weather and terrain information. Additionally, Decision support plans
(Knowledge Engines) must be created that link fire danger levels to
appropriate decisions such as when and where to staff firefighters, what

types and how many resources are deployed during an initial wildfire

16 
response or when open burning restrictions implemented. Finally, a
User Interface must make the information readily accessible and usable
by the User and/or Stakeholders. Throughout the process of designing
these decision support system, it is important to consider the needs
of various user communities to better enable these systems for poly-
centric decision making (Zulkafli et al., 2017) and also to engage
these user communities in the design of the final user interface (Díez
and McIntosh, 2009; Newman et al., 2017). NFDRS users span from
firefighters and fire managers to private industry and the public. The
work presented here forms from the foundation of the Model Base but
the rest of the system must be implemented if fire danger information
can be leveraged to make sound decisions. Further, USNFDRS outputs
must be translated into critical breakpoints to guide the development
and implementation of decision support plans (Andrews et al., 1998).
In the United States, the Weather Information Management System
(WIMS) provides the foundational database and user interface, while
Knowledge bases are created locally in the form of Fire Danger Operat-
ing Plans or Seasonal Trend Analyses which are mandated by policy for
all firefighting units (National Wildfire Coordinating Group (NWCG),
2023). It is important to keep these components in context when
designing fire danger rating systems for operational use and to continue
to engage the diverse user communities in the design of the final user
interfaces to the system to ensure effective use.

7. Conclusions

Here we have presented the development and implementation of
the first revisions to the US National Fire Danger Rating System model
in more than three decades. We have detailed the implementation of
a physically-based, scalable dead fuel moisture model and we have
evaluated a new physiologically-based live fuel moisture model. We
have shown that reducing the number of fuel models and focusing
on five broad fuel types ensures that fuel models are truly unique.
Finally, we assessed the impact of these USNFDRS revisions across six
US National Forests that span a range of climate, fuels and topography.
Both versions demonstrated similar seasonality despite differences in
absolute index values. Moreover, good agreement between AUC val-
ues demonstrated that despite the largely streamlined and automated
nature of the USNFDRS revisions, in most cases Version 4 either outper-
formed or was indistinguishable from the Version 2 when compare to
historical wildfire occurrence. The iterative process of research, devel-
opment, implementation and evaluation provided invaluable insights
into the steps necessary to update the USNFDRS without interrupting
user access, thus establishing a working framework for performing
future revisions. This next-generation fire danger model paves the way
for a nationally-relevant, fully-automated fire danger rating system that
can adequately depict fire danger across a range of climates and fuel
types but that is simpler to understand and communicate. This new
model could be easily adapted for use worldwide.
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Fig. 11. The five components of a Fire Danger Rating System based on the decision support system characterization of Stanesc and Filip (Stanescu and Filip, 2011). Each of the
five components is vital to ensuring that a fire danger rating model like the one presented here is made available in real-time to support wildland fire management tactical and
strategic decisions.
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